Transformations and Bayesian density estimation
نویسندگان
چکیده
منابع مشابه
A Bayesian approach to parameter estimation for kernel density estimation via transformations
In this paper, we present a Markov chain Monte Carlo (MCMC) simulation algorithm for estimating parameters in the kernel density estimation of bivariate insurance claim data via transformations. Our data set consists of two types of auto insurance claim costs and exhibits a high-level of skewness in the marginal empirical distributions. Therefore, the kernel density estimator based on original ...
متن کاملA Bayesian Density Estimation Algorithm
Density estimation is a central problem in data mining and knowledge discovery , with applications from data visualization and exploratory data analysis to supervised and unsupervised concept learning. This paper presents a simple nonparametric method for univariate density estimation that uses Bayesian inference and the minimum-message length principle to induce appropriate mixture models. Its...
متن کاملBayesian Density Estimation and Inference Using Mixtures
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملBayesian Density Estimation and Inference Using
We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation, and are exempliied by special cases where data are modelled as a sample from mixtures of normal distributions. EEcient simulation methods are used to approximate various prior, posterior and predictive distributions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2016
ISSN: 1935-7524
DOI: 10.1214/16-ejs1158